3.1120 \(\int \cos (c+d x) \cot ^3(c+d x) (a+b \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=231 \[ -\frac{a \left (a^2-17 b^2\right ) \cos (c+d x)}{2 d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{b \left (2 a^2-21 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac{3 a \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac{3}{8} b x \left (12 a^2-b^2\right )-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d} \]

[Out]

(-3*b*(12*a^2 - b^2)*x)/8 + (3*a*(a^2 - 2*b^2)*ArcTanh[Cos[c + d*x]])/(2*d) - (a*(a^2 - 17*b^2)*Cos[c + d*x])/
(2*d) - (b*(2*a^2 - 21*b^2)*Cos[c + d*x]*Sin[c + d*x])/(8*d) - ((a^2 - 6*b^2)*Cos[c + d*x]*(a + b*Sin[c + d*x]
)^2)/(4*a*d) - ((a^2 - 4*b^2)*Cos[c + d*x]*(a + b*Sin[c + d*x])^3)/(4*a^2*d) - (b*Cot[c + d*x]*(a + b*Sin[c +
d*x])^4)/(a^2*d) - (Cot[c + d*x]*Csc[c + d*x]*(a + b*Sin[c + d*x])^4)/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.691722, antiderivative size = 231, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {2893, 3049, 3033, 3023, 2735, 3770} \[ -\frac{a \left (a^2-17 b^2\right ) \cos (c+d x)}{2 d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{b \left (2 a^2-21 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac{3 a \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac{3}{8} b x \left (12 a^2-b^2\right )-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*Cot[c + d*x]^3*(a + b*Sin[c + d*x])^3,x]

[Out]

(-3*b*(12*a^2 - b^2)*x)/8 + (3*a*(a^2 - 2*b^2)*ArcTanh[Cos[c + d*x]])/(2*d) - (a*(a^2 - 17*b^2)*Cos[c + d*x])/
(2*d) - (b*(2*a^2 - 21*b^2)*Cos[c + d*x]*Sin[c + d*x])/(8*d) - ((a^2 - 6*b^2)*Cos[c + d*x]*(a + b*Sin[c + d*x]
)^2)/(4*a*d) - ((a^2 - 4*b^2)*Cos[c + d*x]*(a + b*Sin[c + d*x])^3)/(4*a^2*d) - (b*Cot[c + d*x]*(a + b*Sin[c +
d*x])^4)/(a^2*d) - (Cot[c + d*x]*Csc[c + d*x]*(a + b*Sin[c + d*x])^4)/(2*a*d)

Rule 2893

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 1))/(a*d*f*(n + 1)), x] +
 (-Dist[1/(a^2*d^2*(n + 1)*(n + 2)), Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 2)*Simp[a^2*n*(n + 2) -
b^2*(m + n + 2)*(m + n + 3) + a*b*m*Sin[e + f*x] - (a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 4))*Sin[e +
 f*x]^2, x], x], x] - Simp[(b*(m + n + 2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^(n + 2))/
(a^2*d^2*f*(n + 1)*(n + 2)), x]) /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || Intege
rsQ[2*m, 2*n]) &&  !m < -1 && LtQ[n, -1] && (LtQ[n, -2] || EqQ[m + n + 4, 0])

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3033

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*d*Cos[e + f*x]*Sin[e + f*x]*(a + b
*Sin[e + f*x])^(m + 1))/(b*f*(m + 3)), x] + Dist[1/(b*(m + 3)), Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c*
(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e +
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
!LtQ[m, -1]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cos (c+d x) \cot ^3(c+d x) (a+b \sin (c+d x))^3 \, dx &=-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}-\frac{\int \csc (c+d x) (a+b \sin (c+d x))^3 \left (3 \left (a^2-2 b^2\right )+3 a b \sin (c+d x)-2 \left (a^2-4 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{2 a^2}\\ &=-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}-\frac{\int \csc (c+d x) (a+b \sin (c+d x))^2 \left (12 a \left (a^2-2 b^2\right )+18 a^2 b \sin (c+d x)-6 a \left (a^2-6 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{8 a^2}\\ &=-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}-\frac{\int \csc (c+d x) (a+b \sin (c+d x)) \left (36 a^2 \left (a^2-2 b^2\right )+78 a^3 b \sin (c+d x)-6 a^2 \left (2 a^2-21 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{24 a^2}\\ &=-\frac{b \left (2 a^2-21 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}-\frac{\int \csc (c+d x) \left (72 a^3 \left (a^2-2 b^2\right )+18 a^2 b \left (12 a^2-b^2\right ) \sin (c+d x)-24 a^3 \left (a^2-17 b^2\right ) \sin ^2(c+d x)\right ) \, dx}{48 a^2}\\ &=-\frac{a \left (a^2-17 b^2\right ) \cos (c+d x)}{2 d}-\frac{b \left (2 a^2-21 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}-\frac{\int \csc (c+d x) \left (72 a^3 \left (a^2-2 b^2\right )+18 a^2 b \left (12 a^2-b^2\right ) \sin (c+d x)\right ) \, dx}{48 a^2}\\ &=-\frac{3}{8} b \left (12 a^2-b^2\right ) x-\frac{a \left (a^2-17 b^2\right ) \cos (c+d x)}{2 d}-\frac{b \left (2 a^2-21 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}-\frac{1}{2} \left (3 a \left (a^2-2 b^2\right )\right ) \int \csc (c+d x) \, dx\\ &=-\frac{3}{8} b \left (12 a^2-b^2\right ) x+\frac{3 a \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 d}-\frac{a \left (a^2-17 b^2\right ) \cos (c+d x)}{2 d}-\frac{b \left (2 a^2-21 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{\left (a^2-6 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^2}{4 a d}-\frac{\left (a^2-4 b^2\right ) \cos (c+d x) (a+b \sin (c+d x))^3}{4 a^2 d}-\frac{b \cot (c+d x) (a+b \sin (c+d x))^4}{a^2 d}-\frac{\cot (c+d x) \csc (c+d x) (a+b \sin (c+d x))^4}{2 a d}\\ \end{align*}

Mathematica [A]  time = 6.16045, size = 252, normalized size = 1.09 \[ \frac{3 b \left (b^2-12 a^2\right ) (c+d x)}{8 d}+\frac{b \left (b^2-3 a^2\right ) \sin (2 (c+d x))}{4 d}-\frac{a \left (4 a^2-15 b^2\right ) \cos (c+d x)}{4 d}-\frac{3 \left (a^3-2 a b^2\right ) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{2 d}+\frac{3 \left (a^3-2 a b^2\right ) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{2 d}+\frac{3 a^2 b \tan \left (\frac{1}{2} (c+d x)\right )}{2 d}-\frac{3 a^2 b \cot \left (\frac{1}{2} (c+d x)\right )}{2 d}-\frac{a^3 \csc ^2\left (\frac{1}{2} (c+d x)\right )}{8 d}+\frac{a^3 \sec ^2\left (\frac{1}{2} (c+d x)\right )}{8 d}+\frac{a b^2 \cos (3 (c+d x))}{4 d}+\frac{b^3 \sin (4 (c+d x))}{32 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*Cot[c + d*x]^3*(a + b*Sin[c + d*x])^3,x]

[Out]

(3*b*(-12*a^2 + b^2)*(c + d*x))/(8*d) - (a*(4*a^2 - 15*b^2)*Cos[c + d*x])/(4*d) + (a*b^2*Cos[3*(c + d*x)])/(4*
d) - (3*a^2*b*Cot[(c + d*x)/2])/(2*d) - (a^3*Csc[(c + d*x)/2]^2)/(8*d) + (3*(a^3 - 2*a*b^2)*Log[Cos[(c + d*x)/
2]])/(2*d) - (3*(a^3 - 2*a*b^2)*Log[Sin[(c + d*x)/2]])/(2*d) + (a^3*Sec[(c + d*x)/2]^2)/(8*d) + (b*(-3*a^2 + b
^2)*Sin[2*(c + d*x)])/(4*d) + (b^3*Sin[4*(c + d*x)])/(32*d) + (3*a^2*b*Tan[(c + d*x)/2])/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.103, size = 279, normalized size = 1.2 \begin{align*} -{\frac{{a}^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{5}}{2\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}}-{\frac{{a}^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{2\,d}}-{\frac{3\,{a}^{3}\cos \left ( dx+c \right ) }{2\,d}}-{\frac{3\,{a}^{3}\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{2\,d}}-3\,{\frac{{a}^{2}b \left ( \cos \left ( dx+c \right ) \right ) ^{5}}{d\sin \left ( dx+c \right ) }}-3\,{\frac{{a}^{2}b\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{d}}-{\frac{9\,{a}^{2}b\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2\,d}}-{\frac{9\,{a}^{2}bx}{2}}-{\frac{9\,{a}^{2}bc}{2\,d}}+{\frac{a{b}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{d}}+3\,{\frac{a{b}^{2}\cos \left ( dx+c \right ) }{d}}+3\,{\frac{a{b}^{2}\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{d}}+{\frac{{b}^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sin \left ( dx+c \right ) }{4\,d}}+{\frac{3\,{b}^{3}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{8\,d}}+{\frac{3\,{b}^{3}x}{8}}+{\frac{3\,{b}^{3}c}{8\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)^3*(a+b*sin(d*x+c))^3,x)

[Out]

-1/2/d*a^3/sin(d*x+c)^2*cos(d*x+c)^5-1/2*a^3*cos(d*x+c)^3/d-3/2*a^3*cos(d*x+c)/d-3/2/d*a^3*ln(csc(d*x+c)-cot(d
*x+c))-3/d*a^2*b/sin(d*x+c)*cos(d*x+c)^5-3/d*a^2*b*sin(d*x+c)*cos(d*x+c)^3-9/2/d*a^2*b*cos(d*x+c)*sin(d*x+c)-9
/2*a^2*b*x-9/2/d*a^2*b*c+a*b^2*cos(d*x+c)^3/d+3*a*b^2*cos(d*x+c)/d+3/d*a*b^2*ln(csc(d*x+c)-cot(d*x+c))+1/4/d*b
^3*cos(d*x+c)^3*sin(d*x+c)+3/8*b^3*cos(d*x+c)*sin(d*x+c)/d+3/8*b^3*x+3/8/d*b^3*c

________________________________________________________________________________________

Maxima [A]  time = 1.54, size = 251, normalized size = 1.09 \begin{align*} -\frac{48 \,{\left (3 \, d x + 3 \, c + \frac{3 \, \tan \left (d x + c\right )^{2} + 2}{\tan \left (d x + c\right )^{3} + \tan \left (d x + c\right )}\right )} a^{2} b - 16 \,{\left (2 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right ) - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a b^{2} -{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} b^{3} - 8 \, a^{3}{\left (\frac{2 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} - 4 \, \cos \left (d x + c\right ) + 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) - 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{32 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3*(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/32*(48*(3*d*x + 3*c + (3*tan(d*x + c)^2 + 2)/(tan(d*x + c)^3 + tan(d*x + c)))*a^2*b - 16*(2*cos(d*x + c)^3
+ 6*cos(d*x + c) - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1))*a*b^2 - (12*d*x + 12*c + sin(4*d*x + 4*c
) + 8*sin(2*d*x + 2*c))*b^3 - 8*a^3*(2*cos(d*x + c)/(cos(d*x + c)^2 - 1) - 4*cos(d*x + c) + 3*log(cos(d*x + c)
 + 1) - 3*log(cos(d*x + c) - 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.99461, size = 616, normalized size = 2.67 \begin{align*} \frac{8 \, a b^{2} \cos \left (d x + c\right )^{5} - 3 \,{\left (12 \, a^{2} b - b^{3}\right )} d x \cos \left (d x + c\right )^{2} - 8 \,{\left (a^{3} - 2 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (12 \, a^{2} b - b^{3}\right )} d x + 12 \,{\left (a^{3} - 2 \, a b^{2}\right )} \cos \left (d x + c\right ) - 6 \,{\left (a^{3} - 2 \, a b^{2} -{\left (a^{3} - 2 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 6 \,{\left (a^{3} - 2 \, a b^{2} -{\left (a^{3} - 2 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) +{\left (2 \, b^{3} \cos \left (d x + c\right )^{5} -{\left (12 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (12 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{8 \,{\left (d \cos \left (d x + c\right )^{2} - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3*(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/8*(8*a*b^2*cos(d*x + c)^5 - 3*(12*a^2*b - b^3)*d*x*cos(d*x + c)^2 - 8*(a^3 - 2*a*b^2)*cos(d*x + c)^3 + 3*(12
*a^2*b - b^3)*d*x + 12*(a^3 - 2*a*b^2)*cos(d*x + c) - 6*(a^3 - 2*a*b^2 - (a^3 - 2*a*b^2)*cos(d*x + c)^2)*log(1
/2*cos(d*x + c) + 1/2) + 6*(a^3 - 2*a*b^2 - (a^3 - 2*a*b^2)*cos(d*x + c)^2)*log(-1/2*cos(d*x + c) + 1/2) + (2*
b^3*cos(d*x + c)^5 - (12*a^2*b - b^3)*cos(d*x + c)^3 + 3*(12*a^2*b - b^3)*cos(d*x + c))*sin(d*x + c))/(d*cos(d
*x + c)^2 - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**3*(a+b*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.32357, size = 540, normalized size = 2.34 \begin{align*} \frac{a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 12 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 3 \,{\left (12 \, a^{2} b - b^{3}\right )}{\left (d x + c\right )} - 12 \,{\left (a^{3} - 2 \, a b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) + \frac{18 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 36 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a^{3}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}} + \frac{2 \,{\left (12 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 5 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 8 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} + 48 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} + 12 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 3 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 24 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 96 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 12 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 3 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 24 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 80 \, a b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 5 \, b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 8 \, a^{3} + 32 \, a b^{2}\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{4}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3*(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/8*(a^3*tan(1/2*d*x + 1/2*c)^2 + 12*a^2*b*tan(1/2*d*x + 1/2*c) - 3*(12*a^2*b - b^3)*(d*x + c) - 12*(a^3 - 2*a
*b^2)*log(abs(tan(1/2*d*x + 1/2*c))) + (18*a^3*tan(1/2*d*x + 1/2*c)^2 - 36*a*b^2*tan(1/2*d*x + 1/2*c)^2 - 12*a
^2*b*tan(1/2*d*x + 1/2*c) - a^3)/tan(1/2*d*x + 1/2*c)^2 + 2*(12*a^2*b*tan(1/2*d*x + 1/2*c)^7 - 5*b^3*tan(1/2*d
*x + 1/2*c)^7 - 8*a^3*tan(1/2*d*x + 1/2*c)^6 + 48*a*b^2*tan(1/2*d*x + 1/2*c)^6 + 12*a^2*b*tan(1/2*d*x + 1/2*c)
^5 + 3*b^3*tan(1/2*d*x + 1/2*c)^5 - 24*a^3*tan(1/2*d*x + 1/2*c)^4 + 96*a*b^2*tan(1/2*d*x + 1/2*c)^4 - 12*a^2*b
*tan(1/2*d*x + 1/2*c)^3 - 3*b^3*tan(1/2*d*x + 1/2*c)^3 - 24*a^3*tan(1/2*d*x + 1/2*c)^2 + 80*a*b^2*tan(1/2*d*x
+ 1/2*c)^2 - 12*a^2*b*tan(1/2*d*x + 1/2*c) + 5*b^3*tan(1/2*d*x + 1/2*c) - 8*a^3 + 32*a*b^2)/(tan(1/2*d*x + 1/2
*c)^2 + 1)^4)/d